Adaptable Hamiltonian neural networks
نویسندگان
چکیده
The rapid growth of research in exploiting machine learning to predict chaotic systems has revived a recent interest Hamiltonian neural networks (HNNs) with physical constraints defined by Hamilton's equations motion, which represent major class physics-enhanced networks. We introduce HNNs capable adaptable prediction nonlinear systems: training the network based on time series from small number bifurcation-parameter values target system, HNN can dynamical states at other parameter values, where not been exposed any information about system these values. architecture differs previous ones that we incorporate an input channel, rendering parameter-cognizant. demonstrate, using paradigmatic systems, as few four bestows ability state entire interval. Utilizing ensemble maximum Lyapunov exponent and alignment index indicators, show our parameter-cognizant successfully route transition chaos. Physics-enhanced is forefront area research, provide approach understanding broad applications.2 MoreReceived 25 February 2021Accepted 13 May 2021DOI:https://doi.org/10.1103/PhysRevResearch.3.023156Published American Physical Society under terms Creative Commons Attribution 4.0 International license. Further distribution this work must maintain attribution author(s) published article's title, journal citation, DOI.Published SocietyPhysics Subject Headings (PhySH)Research AreasChaosMachine learningPhysical SystemsHamiltonian systemsNonlinear Dynamics
منابع مشابه
Structure-Adaptable Digital Neural Networks
N euroengineers have came up with the idea of arti cial neural networks, massively parallel computing machines inspired by biological nervous systems. Such systems o er a new paradigm, where learning from examples or learning from interaction replaces programming. They are basically composed of interconnected simple processing elements (i.e., arti cial neurons or simply neurons). A predominant ...
متن کاملHamiltonian Neural Networks Based Networks for Learning
The problem of learning represents a gateway to understanding intelligence in brains and machines. Many researchers believe that supervised learning will become a key technology for extracting information from the flood of data around us. The supervised learning techniques, i.e. learning from examples, can be seen as an implementation of the mappings y = F(x), relying on the fitting of given da...
متن کاملGeneralizing Hamiltonian Monte Carlo with Neural Networks
We present a general-purpose method to train Markov chain Monte Carlo kernels, parameterized by deep neural networks, that converge and mix quickly to their target distribution. Our method generalizes Hamiltonian Monte Carlo and is trained to maximize expected squared jumped distance, a proxy for mixing speed. We demonstrate large empirical gains on a collection of simple but challenging distri...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
A patient adaptable ECG beat classifier based on neural networks
A novel supervised neural network-based algorithm is designed to reliably distinguish in electrocardiographic (ECG) records between normal and ischemic beats of the same patient. The basic idea behind this paper is to consider an ECG digital recording of two consecutive R-wave segments (RRR interval) as a noisy sample of an underlying function to be approximated by a fixed number of Radial Basi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review research
سال: 2021
ISSN: ['2643-1564']
DOI: https://doi.org/10.1103/physrevresearch.3.023156